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Abstract

The purpose of this project is to study common break point in the Gini coefficient data
using panel data analysis. We propose two approaches to develop the limiting distribution for
the estimated break point and evaluate the approximation via Monte Carlo simulation. The
Quasi-maximum likelihood method is shown to be more efficient in detecting the instability
in the panels than the Darling-Erd&és Limit Results method, especially in the case when the
number of panels and sample sizes are small.
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1 Introduction

Panel data refers to the pooling of observations on a cross-section of subjects like households,
countries, firms, etc., over several time periods (see [2]). The structure of panel data is different
from the classical cross-sectional data, or time series data. With panel data, we observe not
only one subject over time, but also multiple subjects at the same time. So panel data analysis
is like a marriage of regression and time series analysis. Hence, it allows us to study dynamic
and cross-sectional aspects of a problem. For example, in measuring unemployment, cross-
sectional data can estimate what proportion of the population is unemployed at a point in time.
Repeated cross-sections can further reveal how this proportion changes over time. However, only
panel data can estimate what proportion of those are unemployed in one period, but remain
unemployed in another period.

In the U.S., two famous panel data sets are the National Longitudinal Surveys of Labor
Market Experience (NLS) and the Panel Study of Income Dynamics (PSID), conducted by the
University of Michigan. Starting in the mid-1960s, the NLS consists of five distinct segments of
the labor force: older men aged between 45 and 49 in 1966, young men aged between 14 and
24 in 1966, mature women aged between 30 and 44 in 1967, young women aged between 14 and
21 in 1968, and youth of both sexes aged between 14 and 24 in 1979. Thousands of variables
were collected with emphasis on the supply side of the labor market, including demographic
information, training investments, child care usage, as well as drug and alcohol use, etc. The
PSID, on the other hand, is concerned with exploring the relationship between household income
and socioeconomic characteristics of each family. A large number of studies have used the NLS
and the PSID data sets.

Panel data possess some advantages over cross-sectional or time series data, such as control-
ling for individual heterogeneity, increasing the number of data points along with the degrees
of freedom, and reducing the collinearity among explanatory variables. Therefore, panel data
are well suited to study economic problems like income, unemployment, poverty level, and so
on. An illustrative empirical example is given by Hajivassiliou (1997), who studies the external
debt repayment problems, using a panel of 79 developing countries observed over the period
1970-1982. The model considers country specific variables such as their colonial history, finan-
cial institutions, religious affiliations and political regimes. Because all these factors affect the
attitudes that these countries have with regards to borrowing and defaulting and the way they
are treated by the lenders; ignoring this country heterogeneity will run the risk of obtaining
biased results (see [2]).

2 Data Source and Description

The Gini coeflicient is a widely accepted measurement of income inequality in economics study.
Roughly speaking, a Gini coefficient of zero represents perfect income equality, i.e., everyone
gets exactly the same income. On the other hand, a Gini coefficient close to one implies high



inequality, in other words, wealth is concentrated among only a few people while others are all
in extreme poverty. According to the U.S. Census Bureau, most European developed countries
tend to have Gini indices between 0.24 and 0.36.

The purpose of this project is to examine if there is a common change in means over the
certain time period using a panel data analysis model. Common breaks in panel data are a
wide spread phenomena. For example, an oil price shock may affect almost every country’s
economic growth. The data set we used in this project is extracted from the World Income
Inequality Database (WIID2C), which can be accessed from UNU-WIDER website (see http:
//www.wider.unu.edu/research/Database/en_GB/wiid/). The original data set contains the
Gini coefficients in percentage points and relative source information of 159 countries, with
some records even reaching back as far as 1860. The variable, Gini coefficient, was calculated by
WIDER using methods developed by Shorrocks and Wan to estimate the Gini coefficient from
decile data (see [8]).

The first step in our analysis procedure is to reshape the raw data set (WIID2C) from long
version to wide version in SAS, thus making it more convenient to use. Note, if several Gini
coefficients are reported on the same year, then we will use the mean of these numbers as the
Gini coefficient of that year. It becomes evident that lots of the data points are missing for most
of the countries, especially before the 1980s, so a truncation in time is necessary. In order to
ensure enough number of countries and data points, we decide to choose a twenty-year span from
1987 to 2006. Hence, a total number of 33 countries, including 24 European countries (United
Kingdom, Germany, Spain, and so on ), Australia, United States, China, Taiwan and South
American countries (Brazil, Argentina, and so on), each with at least 16 data points during this
time period, are extracted from the reshaped data set using the statistical software package R.
To replace missing values, we consider the following two cases:

e If the first data point, or the last data point are missing, then replace it with the first
following data point, or the last preceding data point, respectively.

e Otherwise, replace the missing value(s) by linear interpolation.

Figure 2.1 to Figure 2.4 are plots for the data set by regional groups, with dotted lines repre-
senting linear interpolation. The raw data set and the data set after replacing missing values
are included in the Appendix.
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Figure 2.1: Plots for Gini coefficients of selected Countries (Group 1 and 2).
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Figure 2.2: Plots for Gini coefficients of selected Countries (Group 3 and 4).
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Figure 2.4: Plots for Gini coefficients of selected Countries (Group 7).

3 The Model

The panel data model is defined as
Xi,j = W + 51‘I{j>;€0} + €45 1<i<N,1<j5<T. (3.1)

where Ele; ;| = 0 for all ¢ and j. We call the series {X; j,1 < j < T} the ith panel. In this model,
each panel has a common break point at kg, where kg is unknown. §; represents the magnitude
of the break, which can be either random or nonrandom and is assumed to be independent of
the error process ¢; ;. The pre-break mean of the ith panel is p; and the post-break mean is
i + 6;. We refer to N as the number of panels or the number of series, and refer to T as the
number of observations or sample size. For panel data, N is usually large relative to T. We are
interested in testing the null hypothesis:

Hy:6; =0 forall 1 <i<N. (3.2)

This means under the null hypothesis, there is no change in the location parameter (mean) p;
throughout the whole observation period. Under the alternative hypothesis, there is an integer
ko, 1 < kg < T, such that

Hid = fi2 = = Hiky 7 Piko+1 = - = pip for 1 <i < N.
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The alternative implies that the means have changed at the same time in each panel. It is
obvious that if kg = T', then there is no change over the time.

In Bai’s paper (see [1]), he used a quasi-maximum likelihood approach to estimate the time
of change kg, by the location of the maximum of the absolute value of

L, o |TH(T — |T1))
VNT N1/2 Z {2 T2 ) 0<t< ]—) (33)
where X T
Z7,i(t) Ti2 <ST,Z(t) TST,i(1)> . 0<t<1,
and

1 .
Tlgrolo TE Zem =02, 1<i<N. (3.4)

Note, here |-| means taking the integer part. af is also known as the long-run variance of

eij,1 < j <T, that is, the spectral density at frequency zero.

Definition 3.1. A Linear Process, x:, is defined to be a linear combination of white noise
variates wy, and is given by

T=pt Y ey, Y Wyl < oo (3.5)

j=—o00 j=—00

For the linear process in Definition 3.1, we may show that F[z;] = u and the autocovariance
function

y(h) = Cov(zy, xn) = 02 > bjthisn:

j=—0c0

where 02, = Var(w;). Note, D72 oo [¥j] < oo implies 3222 414 < oo, for fixed h. Hence,
for a linear process with white noise errors, its mean and autocovariance function are well defined.
In this project we follow a model where the error terms form a linear process with mean 0:

€ij = Zci,ZEi,jfE; 1<i<N1<j<T (3.6)
=0

Definition 3.2. A weakly stationary time series, xy, is a finite variance process such that:

(i) the mean function, p, is a constant and does not depend on time t, and

13



(ii) the autocovariance function, v(s,t), depends on s and t only through their difference |s—t|.
Assumption 3.1. ¢; ;s in (3.6) are assumed to satisfy the following reqularity conditions:

(i) the sequences {e;;,—0o < j < oo} are independent of each other, hence the panels are
independent of each other;

(it) for every i the variables {e; j, —00 < j < oo} are independent and identically distributed.

It is easy to see that under these conditions the process VN,T does not depend on Var(g; ) so it
can be assumed that the variance of the innovations is 1, and that the higher moments exist:

Eeip =0, Eaio =1 and Flg;o|" < 0. (3.7)

Besides, we require the average of the high moments of €; ¢’s to be bounded:

N
hmsup—ZEkzol < 0. (3.8)

N—oo i—

The choice of k will be specified in Theorems 3.1 and Theorem 4.1 as kK > 4 and x = 8. The
errors in each panel are stationary linear processes and their distributions depend on the panels.
The coeflicients satisfy the following properties:

Property 3.1. In Definition 3.1, the coefficients of the linear sequences in (3.6) have the

following properties:
(1) |ciel < co(l+1)7 forall1 <i< N, 1</ < oo with some ¢y and o > 2;

o0
(i3) there is 6 > 0 such that a3 > 6% with a; = Zcm forall1 <i<N.
=0

Notice that under Property 3.1 (ii), together with (3.4) and (3.7), we get
oo o0 o0 2
Z Z Ci 0Ci, kE €i,j—LEij— k] <Z Ci,ﬂ) )
£=0 k=0 =0

which implies that a? = 07;2 . Thus,
O'Z-Q >¢62foralll <i<N, (3.9)
i.e., we have a common lower bound, 62, for the long-run variances of each panel.

Assumption 3.2. The number of panels (N ) and the length of the observed time series in each

panel (T') are assumed to satisfy:

N
= =0, (3.10)

14



Note, this assumption allows the number of panels to be larger than the number of the obser-
vations in each panel.

Definition 3.3. A process, {x:}, is said to be a Gaussian process if the n-dimensional vectors
X = (X4, XTty, - - -, X1, ), for every collection of time points, t1,ta, ..., t,, and every positive integer
n, have a multivariate normal distribution.
Definition 3.4. The Skorokhod space D[0, 1] is the set of all right continuous and with left limit
functions (RCLL) from [0,1] in R.

D[0,1]

Let —> denote the weak convergence of stochastic processes in the Skorokhod space DJ0, 1].

Theorem 3.1. Under Hy, if Assumption 3.1, Property 3.1, (3.10) hold and (5.7), (3.8) are
satisfied with some Kk > 4, then

_ D[0,1]

Vnr(t) — T(t)
where T'(t) is a Gaussian process with ET(t) = 0 and ET(#)T'(s) = 2t2(1—s)2, if 0 <t <s < 1.
Theorem 3.1 provides a possible way to study the asymptotic behavior of X_/N,T(t) by investigat-
ing the Gaussian process I'(t). More precisely, sup;<,<; |Va,7(t)| and fol I_/]%T (t)dt converge in

distribution to supy<;<; [I'(t)| and fo ['2(t)dt. A formal, detailed proof of Theorem 3.1 can be
found in Horvath and Huskova (2012) [6].

Definition 3.5. A continuous time process {W(t);t > 0} is called a standard Brownian
motion, or a Wiener process, if it satisfies the following conditions:

(i) W(0) =

(i) {W(te) =W (t1), W(ts) —W(ta),...,W(tn) —W(tn—1)} are independent for any collection
of points, 0 <ty < to--- < ty, and integer n > 2;

(1i1) W(t+ At) — W(t) ~ N(0,At) for At > 0.
Proposition 3.1. If {W(t);t > 0} is a Wiener process, then
E[W(t)] =0, Var[W(t)] =t, Cov(W(s), W(t)) = min(s,1).

The results for the expectation and variance follow immediately from definition (3.5), W (t) =
W(t) — W(0) ~ N(0,t). To check the results for the covariance, suppose 0 < ¢t < s < 1, since
non-overlapping increments are independent, it is easy to see:

Cov(W(t), W(s)) = E[(W(t) — EW(1)]) - (W(s) — E[W (s)])]

— E[W(t) - W(s)
— E[W(t) - (W(s) — W) + W())]
W) - (W(s) - W(t)] + [W(tﬂ

15



Corollary 3.1. Under Theorem 3.1, we have
{T(t),0 <t <1} 2 {V2(1— )*W (/(1 —1)?) ,0 < t < 1}, (3.11)
where {W(t),0 <t <1} is a Wiener process.

Proof: Since a Gaussian process is uniquely determined by its mean and covariance structure,
checking the mean and covariance functions of I'(¢) in Theorem 3.1 will be sufficient. It is easy
to see the mean is zero. Suppose 0 <t < s < 1, the covariance function for the right-hand-side
Wiener process is

Cov <\/§(1 — )W <(1i2t)2) V2(1 - 5)°W ((1i)2>>

e (o () ()

=2(1=#)*(1 = 5)*min <(1 —t)? (1 8>2>
= 2t2(1 - 5)2
= E[D(t)T(s)].

It is well known that the CUSUM process (standardized by the long-run variance) converge
weakly to a Brownian bridge assuming weak dependence. Under the condition of Theorem 3.1,
for each i the process Zr; converges to a Brownian bridge, so it is interesting to compare (3.11)
to (1 —¢)W(t/(1 —t)) which defines a Brownian bridge.

Theorem 3.2. If Assumption 3.1, Proposition 3.1, (3.10) hold and (3.7), (3.8) are satisfied
with some k > 4, and

k k
0< liminf?o < limsup — < 1,

T—o0 T—o0

T N
N1/2 253 0,
=1

as N,T — oo, then

sup |V r(t)] L, .

0<t<1

Theorem 3.2 implies the null hypothesis is rejected when supg<;<; |V, (t)] is large. We can

compute the asymptotic critical values from Corollary 3.1, thus developing a test based on the
value of supg<;<1 [V,r(t)|. The test is sensitive to fixed changes in relatively few panels, and
at the same time it is also sensitive to relatively smaller changes in a large number of panels.
However, in order to implement the test based on supy<;<; |Va,r(t)|, we have to estimate the

long-run variance o? first.
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4 Estimation of Long-Run Variance for Panel Data

Since the long-run variances 0?’s in (3.3) are unknown, we need to find some suitable estimators
for them. Hence we define

Vivr(t N1/2 Z {

with the long-run variance of T~'/2S7,(1) estimated by &2 (i). We consider the following two

S Z7,(t) — LTt] (TTQ L7t)) } 0<t<1, (4.1)

cases:

(1) If the innovations {e;;,1 < j < T'} are independent and identically distributed for all ¢,
then we can use the sample variance

T
(i) = o (K — Xr(i))? (12)
j=1
_ 1 &
Xr(i) = T ZXi,J
j=1

to estimate the long-run variance of 7-/2S7,(1) in the i*" panel.

(2) If the independence cannot be assumed, then we use a kernel estimator (see [6]):

7%2 i5— +QZK< )’m i), (4.3)

=1

.

where
T —
Are(t Z (1)) (Xij+e — X7(3))

is the sample covariance of lag ¢ in the ¥ panel. The function K is the kernel in the
definition of 6% (i) in (4.3) and h = h(T) is the bandwidth (window). Later we will see
in the next section that one should be careful with the choice of the bandwidth in the
simulation study since the bandwidth choice is one of the hardest parts in the estimation.

Definition 4.1. fis Lipschitz continuous on [a,b] if
|f(t) — f(s)]| < C|t—s| foralla<t,s<b,
where C' = C(a,b).
Assumption 4.1. We assume the following conditions on the kernel estimator:

(1) K(0) =

17



(i) K(u) =0 if |u| > a and K(u) is Lipschitz continuous on [—a, a] with some a > 0,

(ii) K has v bounded derivatives in a neighborhood of 0 and the first v — 1 derivatives of K
are 0 at 0, where v > 1 is an integer,

(iv) h=h(T) = o0 and h/T — 0 as T — oc.

From the discussions in section 3, we can see that in order to claim Vi r and VN,T have the same
asymptotic distribution, the estimator 62.(i) must be very close to 0. Assumption (4ii) above is
needed to obtain a very small bias of the estimator 6% (i). Horvath and Huskov4 (2012) showed
in their paper that if the panels are dependent of each other, then even very small changes to the
model in (3.1) will alter the asymptotic distribution for Vy 7. Similarly, the long-run variance
estimator 6%(1’) must be very close to J? to claim that Viy r and VMT have the same asymptotic
distribution. Further discussions on kernel estimators can be found in Taniguchi and Kakizawa
(2000) and Brockwell and Davis (2006). Notice, that the ”flat-top” Bartlett type kernel satisfies
Assumption 4.1 for all v > 1. Therefore, we will use a ”flat-top” kernel in the next section.

The next condition is on the connection between the number of panels (N), the length of the
observed time series in each panel (T) and the bandwidth (h):

Nh2 N1/2

?—)Oiind nr

where 7 = min(v,a — 1). (4.4)

As in (3.10), assumption (4.4) allows for a short time series in a much larger number of panels.

Theorem 4.1. If Hy, Assumption 3.1, Property 3.1, Assumption 4.1 hold and (3.7) and (3.8)

are satisfied with k = 8, then

Var(t) 22 r, (4.5)

where I'(t) is defined in Theorem 3.1.

5 Autoregressive Panels

Definition 5.1. An Autoregressive Model of order p, abbreviated AR (p), is of the form
T = Q1T4—1 + P2Ti—2 + -+ + OpTi—p + &4, (5.1)

where x¢ is stationary, and ¢1, P2, ..., ¢p are constants (¢, #0).

Consider an AR(1) process defined by a recursion formula
Ty = pri—1 + €. (5.2)
Iterating (5.2) backwards k times, we get
Ty =pTi—1 + €

18



:pzfﬁtﬂ + pxi—1 + €&

k—1

=pFzi_), + Z pleis.
/=0

This suggests that if |p| < 1 and E(log(1+|eo|) < oo, the above formula has a stationary solution

such that z; is a function of g4, &4_1, ..., i.e., x; is a linear process defined in (3.5)
o0
Tt = ZPZ&&—L (5.3)
=0

Since E(log(1+ |eo])) < oo implies for all ¢ > 0

hmsup| 2l =0 a.s.,

{—00 ct
that is, V6 > 0,3¢ > £o(6), such that |4 < ¢!, hence, choose ¢ such that |pc| < 1
o]
St set 35 eSSt 3 el <Sodace 3 el <o 64
=0 {=lo+1 {=lo+1 =lo+1

This implies (5.3) exists with probability 1, and it is straightforward to check this is a stationary
solution. We can see that the process in (5.3) does not depend on the future, we say the process
is causal. Furthermore, if we assume the error terms are independent identically distributed
random variables, then

(i) Ele;i] exists implies E[x] exists;
(ii) Ele?] exists implies E[z?] exists.

Proof: From (5.3) and |p| < 1, we get

[e.9]
= Zng[Et,g] < 00
=0

and by the Lebesgue dominated convergence theorem,

o 2 o oo
E[UC?] =F (Z Peé‘t—£> = Z ZpgpkE[st_gst_k] < 0

=0 =0 k=0

Next, we claim that if the error terms ¢;’s are independent and identically distributed random
variables with mean zero and Var(e;) = o2, then by Donsker’s Theorem (see [4]),

Tl/QZé“g —>UW ), 0<t<1

19



and
[Tt]

1 Do) o
_ . _ t

where W (t) is the Wiener process.

6 A Simulation Study

In this section, we investigate the asymptotic behavior of supy<;<; |V 7(t)| under Theorem 3.1
and Theorem 4.1, seeking to obtain the 90%, 95% and 99% critical values for this test statistic
using Monte Carlo simulation. We are also interested to see how well the approximation will be
if the number of panels (N) and sample size (T) are small or moderate. Similar results can be
obtained for supy<;<; |V,r(t)|, where Vi r(t) is defined in (3.3).

Table 6.1 contains the asymptotic critical values z, generated from standard Brownian Motion
using the equation,

P{ sup [(t)] < za} = o
0<t<1

where o« = 0.9,0.95 and 0.99 (see [6]).

Table 6.1: Asymptotic critical values of supg<;<; [T'()]

90% | 95% | 99%
0.7956 | 0.8942 | 1.1452

Next, we use the following procedure to calculate the critical values of supy<;<; [Vn,r(t)| in
case of the errors being independent identically distributed standard normal, X?, — b5, and t5, as
well as they are AR(1) processes with p = 0,0.1,0.3 and 0.5, respectively.

e Step 1: Generate the panels under the null hypothesis, i.e., let X;; = e;; for < i <
N,1 < j <T, where the e; ; follows the underlying distribution.

e Step 2: Estimate the long-run variances 67 using the sample variance in (4.2) if the errors
are 1.i.d., or using the kernel estimator in (4.3) if the errors are dependent of each other.

e Step 3: Compute the maximum of the absolute value of Vi r(t) defined in (3.3) using the
long-run variances 67 estimated in Step 2.

e Step 4: Repeat Step (2) and (3) 1000 times, then compute the empirical distribution
function

- number of elements in the sample <t 1

E(t) = - = nil{xi <t}
=1

20



based on the simulated sample. Thus, we obtain the limiting distribution of supy<;<1 [V, (%)].
e Step 5: Obtain the critical values of the limiting distribution.

Table 6.2 shows the outcomes of the Monte Carlo experiments when the distribution of the
errors are independent identically distributed standard normal, X% — b5, and t5, respectively. The
long-run variances o;’s are estimated by the sample variances in each case. The last two distri-
butions allow us to see the effects of skewness and heavy-tailness on the limiting distribution.
The critical values obtained from the simulations indicate that those effects are negligible. From
Table 6.2, we can see the simulated critical values are very close to the asymptotic critical values
in Table 6.1. Comparing Table 6.2 and Table 6.3 with p = 0 illustrates that the estimation of
the long-run variance reduces the accuracy of the limiting results.

Table 6.2: Simulated critical values of sup |Vy r(t)| based on independent and identically
0<t<1

distributed N(0,1), X2 — 5 and t5 errors.

N(0,1) X3 —5 ts
N/T 90%  95% 99% | 90%  95%  99% | 90%  95%  99%
50/50 | 0.811 0.904 1.104 | 0.799 0.910 1.102 | 0.800 0.961 1.159
100/50 | 0.799 0.864 1.146 | 0.793 0.860 1.066 | 0.777 0.873 1.043
100/100 | 0.836 0.956 1.200 | 0.857 0.949 1.153 | 0.813 0.919 1.127
200/100 | 0.834 0.927 1.141 | 0.820 0.900 1.038 | 0.831 0.932 1.162

According to the discussions in Section 4, if the innovations are dependent, a ”flat top” kernel
function can be used to estimate 62.(i). Hence, we can take the kernel function of the form

1, 0<|z|<1
K)={2—|z|, 1<z<2 (6.1)
0, 2 <|z|.

After a couple of trials and errors, we choose h = 1.5 for T = 50 and h = 1.7 for T' = 100 as
the optimal windows, and estimate the long-run variance using (4.3) with the kernel function
defined in (6.1). Table 6.3 summarizes the resulting critical values of AR(1) model with the
choice of the parameter p = 0, p = 0.1, p = 0.3, and p = 0.5, respectively. Upon inspecting
Table 6.3, we can notice that the simulated critical values will be farther from the asymptotic
critical values with the increasing of dependence in the AR(1) model, as the series tends to be
non-stationary if p is large.

The power of the test are given in Table 6.4, Table 6.5 and Table 6.6. The magnitude of the
change is set to be independent uniform on [—1/2,1/2] or [—1,1] in all the panels as well as in
50% of the panels. We choose the change point at |7'/4]. The observed percentage of rejections
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are reported at the 5% significance levels for independent standard normal errors (Table 6.4)
and AR(1) process with p = 0.1 and p = 0.3 with independent standard normal innovations
(Table 6.5 and Table 6.6). As we have discussed in the previous section, the empirical results
indicate that our test is sensitive to small changes in a large number of panels and relatively

large changes in only several panels.

Table 6.3: Simulated critical values of supy_;.1 |V 7(t)] in case of AR(1) processes with standard

normal errors.

p=0 p=0.1 p=03 p=0.5
N/T 90%  95%  99% 90%  95%  99% 90%  95%  99% 90%  95%  99%
50/50 0.926 1.105 1.274 | 0.866 0.989 1.250 | 0.894 0.998 1.247 | 1.194 1.299 1.581
100/50 | 1.003 1.151 1.517 | 0.945 1.071 1.306 | 0.956 1.063 1.272 | 1.318 1.467 1.752
100/100 | 0.887 1.037 1.222 | 0.848 0.960 1.162 | 0.983 1.131 1.397 | 1.497 1.647 1.998
200/100 | 0.904 1.044 1.235 | 0.877 0.961 1.136 | 1.065 1.187 1.379 | 1.728 1.876 2.153

Table 6.4: Empirical rejection percentage for supy_,.1 |V r(t)| at 5% significance level in case

of independent standard normal errors when ko = |71'/4].

Ul-1/2,1/2] | U[-1,1]
N/T 50% 100% | 50% 100%
50/50 | 204 56.6 | 92.9 100

100/50 | 31.9  85.6 | 99.8 100

100/100 | 88.2 100 100 100

200/100 | 99.6 100 100 100

Table 6.5: Empirical rejection percentage for supy,.1 |V, r(t)| at 5% significance level in case
of AR(1) process with p = 0.1 and standard normal innovations when ko = |7'/4].

Ul-1/2,1/2] | U[-1,1]
N/T | 50% 100% | 50% 100%
50/50 | 205 574 | 922 100

100/50 | 25.2 781 | 99.9 100

100/100 | 90.4 100 | 100 100

200/100 | 99.7 100 | 100 100
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Figure 6.1: Empirical Distribution Function of sup |V r(t)| with i.i.d. standard normal errors.
0<t<1
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Table 6.6: Empirical rejection percentage for supg_,.; |V r(t)| at 5% significance level in case
of AR(1) process with p = 0.3 and standard normal innovations when ko = |T'/4].

Ul-1/2,1/2] | U[-1,1]
N/T 50% 100% | 50% 100%
50/50 39.0 65.5 96.1 100
100/50 | 50.2  89.1 99.7 100

100/100 | 91.2 100 100 100

200/100 | 99.5 100 100 100

7 Results and Discussions

We are interested in whether or not there exists a common change in mean for all the panels
using the test derived in previous sections. In case of 33 countries over 20 years in the dataset,
we simulated the critical values for supg ;.1 |V r(t)| with N=33 and T=20. Since T=20 is
small, the long-run variance estimator in (4.3) might not be very accurate. So we used the
sample variance estimator in (4.2) as well as the kernel estimator in (4.3) with several choices
of bandwidths. The resulted maximum values of |V 7 (t)| from our Gini dataset are 8.522 and
5.750, respectively. This means the null hypothesis is rejected at 0.01 significance level in our
case; hence, we conclude there is a common change in the mean of each panel. Furthermore, the
test detects that the change point, i.e., the location of the maximum value of |V r(t)|, occurred
at year 1992. A visual inspection on Figure 2.1 to Figure 2.4 supports the conclusion that there
is an increase in the Gini coefficients in almost every country in our dataset.

Table 7.1: Simulated critical values of supy;.1 |V 7(t)| with N=33 and T=20 based on N(0, 1),
X% — 5 and t5 errors.

Errors | 90%  95%  99% |
N(0,1) | 0.711 0.817 1.017
Xz —5 | 0.707 0.816 1.105
t5 0.719 0.823 1.113
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Table 7.2: Simulated critical values of supg_,.1 |V 7 (t)| with N=33 and T=20 based on AR(1)
processes, the choice of the bandwidth for kernel estimator is 0.6.

AR(1) Process | 90%  95%  99%
p=20 0.735 0.831 1.053
p=0.1 0.938 1.047 1.328
p=0.3 1.455 1.612 1.914
p=05 2.263 2.416 2.797

8 Darling-Erdos Limit Results

Consider the model in (3.1), the quasi-maximum likelihood approach of Bai (see [1]), yields the
test statistic maxj<p<7 |An7(k)|, where

Anr(k) = k(T N Z{ S 73 (k) — k(TT_k)} (8.1)

with i
Zri(k) =Y (Xij — Xir) (8.2)

j=1

and X;r is sample mean of the i panel. Note that under the null hypothesis (3.2), Ay (k)
does not depend on the unknown s, so under Hy we have

AN7T<k):HN,T(k) for all 1§k<T, (83)
where
S | 1N15k kSTQk(T—k:) A
wr) = e o 1o (S0 - 75 @) P e
with i
Si(k) = eij (8.5)
j=1

Assumption 8.1. In this section, we consider the case when the panels are based on the inde-
pendent observations with the following reqularity conditions:

(1) eij,(1<i< N,—o0<j<o0) are independent.
(2) Eei,o = 0, Ee%’o =1.

(3) for every i, 1 <i < N, the variables {e; j, —00 < j < 0o} are identically distributed.
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N
1
(4) limsup — Y Felq < 0.
Neooo N ; Z,O
Since Hn (k) does not depend on Var(e; o), the second assumption is not a restriction on the
model and therefore can be assumed without loss of generality. The distribution of the eq ;’s
can be very different and we only require the average of the fourth moments is bounded. Let

A(z) = (2log z)'/? (8.6)

and 1 1
D(z) =2logx + B loglog x — 5 log . (8.7)

Due to (8.3) it is enough to consider Hy (k) under the null hypothesis. Chan, Horvath and
Huskova (2012) proved the following Darling-Erdés type results in their paper (see [3]). They
also showed that the normalizing centering sequences A(logT?) and D(log T?) might not work
well if the sample sizes are small or moderate via simulations. It is feasible to replace them with
other sequences and the limit is still the double exponential extreme value distribution.

Theorem 8.1. If Assumption 8.1 holds, then

. A(log T?) ) B
= < = —
odim 2L 4o <0 Dog ) = ep(2e) (59

for all t.

Theorem 8.2. If Assumption 8.1 holds, then we have for all « > 0

. A(log(T?/(log T)™)) oy | _ -
min(zlvl,nTl)aooP{ V2 1Zker ()] <t + D(log(T"/ (log T) ))} a exp(—2(z 9))

for all t.

Remark 8.1. In order to provide more accurate approximations for the asymptotic distribution
of maxi<p<r |Hny (k)| under the null hypothesis in case of small sample sizes, we suggest to
use the following formula. The tail approximation of the mazximum of the absolute value of the
Ornstein-Uhlenback process (cf. Theorem A.3.3 in Csorgd and Horvdth (1997)) gives for all
fixed T

P {;5 max [Hyr(k)| > x} ~ TOR(-T°/2) {210g(T/2) - %bg(T/Q) + % +0 < ! )} .

<k< \/71'/2 ?

The other possibility is to compute the maxima of Hy 7 (k) on restricted intervals. We assume
that
1<hpr<T/2and hp/T — 0as T — . (8.10)
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Theorem 8.3. If Assumption 8.1 and condition (8.10) hold, then we have

. A(log(TQ/h%)) 2 /72 —t
VEONT T < — _
min(}l\}g})ﬂm P { NG hTSII?Sa%(_hT |Hy (k)| < t+ D(log(T*/h7)) exp(—2e™")
(8.11)
for all t.

Using Theorem 8.1 - 8.3 together with equation (8.3), we obtain the limiting distribution of
the test statistic max)<p<7 |An (k)| under Hy.

Theorem 8.4. If Assumption 8.1 holds with min(N,T) — oo,

0< h;pni)ioréf% < lijrpjotip];? <1 (8.12)
and N
T 62
-+ , 8.13
(N loglog T')1/2 P o? o (8:13)
then we have A )
T
AlosT?) | ox |Anr(k)| — D(log T%) 2 . (8.14)

V2 o 1<k<T

We note that assumption (8.12) implies the change cannot occur too early or too late. This
is a standard assumption in change point analysis. If the test statistic computed from the right-
hand-side of (8.14) is large, then the null hypothesis is violated. Theorem 8.4 establishes the
consistency of the testing procedure based on max;<i<r |[An1(k)|.

2

Remark 8.2. In applications, the value of the variances o;

2

Q-

s are unknown but they can be
estimated with the sample variance 6;. The results in this section remain valid if Axr(k) is

replaced with
N
A T 1 1,5 k(T — k)
Anr(k) = 7]{:(T -y i Z {ﬁZT,i(k) S
i=1 ¢

In several applications it is unreasonable to assume that the panels are based on independent
observations. If the error terms are assumed to form a linear process,
o
€ij =Y Cigij, 1<i<N1<j<T, (8.15)
=0
where the variables ¢; ; satisfy Assumption 8.1. In addition to the requirement that the average
of the fourth moments is bounded, we also assume

=

1
lim sup N Z(E|6i,o|7)1/2 < oo with some v > 4. (8.16)

N—oo %t

The errors in each panel are stationary linear processes and their distributions depend on the
panels. The coefficients in the definition of linear processes satisfy the same properties as in
Property (3.1).
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(a) |cig] <col+1)"foralll1 <i< N, 1< j<T with some ¢y and a > 2,

oo
(b) there is § > 0 such that a? > 62 with a; = Zci,g forall 1 <7< N.
£=0

In the definition of Zy (k) now 012 is the long-run variance of the i*" panel, given by

2
T

. 1 .
TIE»I;OTE z;em :03, 1 << N.
‘7:

Under assumption 8.1 and (8.16) together with Property (3.1) o2 exists, a? = 02 and
o?>¢6*forall1 <i<N, (8.17)

i.e., we have a common lower bound, 62, for the long-run variances of each panel. The last
condition is on the connection between the number of panels (N), the length of the observed
time series in each panel (T) and the interval where the maximum is computed:

N1/2h§§77)/(2w) (log hy)1+2/7(log log T)Y/? — 0, (8.18)

where 7 is from assumption (8.16). Next, we show that Theorem 8.3 holds for maxy,, <x<r—n, |An1(E)]|,

the proof of the theorem is based on Philips-Solo (1992) representation (see [3]). In applications
2 2

the long-run variance o; is unknown, we can estimate 02-2 with a Bartlett type estimator o7

[6])-

Theorem 8.5. We assume model (3.1) holds. If Hy, Assumption 8.1, (8.16), Property (3.1)
and (8.18) are satisfied, then we have

(see

. A(log(T2/h?F)) 2 /72 —t
Ve /T < _ _
i P{EEEOII (6] <+ DOoR(T2 1) b = exp(-267
(8.19)
for all t.

In this section we investigate, via Monte Carlo simulations, to see how well the empirical
distribution

FN,T;a(t) = P{LN,T;a < t}

can be approximated by the limiting distribution exp(—2exp(—t)), where functions A and D
are defined in (8.6) and (8.7) and
A(log(T?/(log T)*))

_ o 2 a
LNT.a = NG 1r;lkagTIAN,T(k)I D(log(T=/(log T')%)).

It has been observed that if the normalization and centering of Theorem 8.2 is used, then
the approximation with the limit exp(—2exp(—t)) is better on the upper tail in case of small
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and moderate sample sizes (see [3]). Modifying the normalizing and centering sequences as in
Theorem 8.2 were suggested by Csérgé and Horvath (1997, Chapter 1).

We consider the power of the test very briefly here. The size of the changes are independent
uniform on [—1/2,1/2] or [—1,1] in all the panels as well as in 50% of the panels. The powers
of the test are reported at 5% significance level in case of independent standard normal errors
when the change point kg = |T/4] (Table 8.1) and ko = |7'/2] (Table 8.2). Upon inspecting
Table 8.1 and 8.2, we notice that the test has more power when ko = |7'/2| than ko = |T/4] .

Table 8.1: Empirical rejection percentage for Ly 1.3 at 5% significance level in case of indepen-
dent standard normal errors when ko = |7'/4].

Ul-1/2,1/2] Ul-1,1]
N/T | 25% 50% 100% | 25% 50% 100%
50/50 7.0 20.2 61.3 | 59.2 96.0 100
100/50 | 11.2 329 90.6 | 83.6 99.9 100
100/100 | 38.9 903 100 | 99.6 100 100
200/100 | 67.0 995 100 | 100 100 100

Table 8.2: Empirical rejection percentage for Ly 7.3 at 5% significance level in case of indepen-
dent standard normal errors when kg = [7'/2].

Ul-1/2,1/2] Ul-1,1]
N/T 25% 50% 100% | 25% 50% 100%
50/50 13.1 382 86.3 | 789 99.6 100

100/50 | 18.1 60.3 99.2 | 95.8 100 100

100/100 | 40.5 89.9 100 | 99.6 100 100

200/100 | 65.3 99.5 100 100 100 100

We now test the null hypothesis on our Gini index dataset using the Darling-Erdds Limit
Results developed in the previous sections. Not surprisingly, the test also rejects the null hy-
pothesis at 0.01 significance level in favor of the alternative that there is a common change in the
Gini index. It is interesting to compare the powers obtained in Table 6.4 and Table 8.1, under
the same conditions when the change point ko = |7'/4]. The test derived from Darling-Erdé&s
limit results approach is less efficient in detecting the instability than the test obtained from the
quasi-maximum likelihood method, especially in case of small changes with small or moderate

sample sizes.
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9 Appendix

9.1 Code Written for Data Extraction and Simulation
9.1.1 Data reshaping

This code was written in SAS and takes care of data reshaping. It converts the dataset from
long version to wide version.

libname income ’C:\Users\u0637206\Desktop\Income study\WIID2C.x1ls’;
options validvarname=any;

data all;
set income."WIID2C$"n; *read dataset into SAS;
run;

proc print data=all;
where year=.;
var country3 year gini;

run;

data country3_yr_gini;
set all;
keep country3 year gini;*keep 3 variables;

run;

proc print data=country3_yr_gini;

run;

proc sort data=country3_yr_gini out=gini_sorted;
by country3 year;

run;

data incomel;

set gini_sorted;

by country3 year;*must sort first;

if year=. then year=.z;*missing year;
firstyr=first.year;

lastyr=last.year;
firstcountry3=first.country3;
lastcountry3=last.country3;

run;
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proc print data=incomel;
var country3 year gini firstyr lastyr;

run;

**xfind the average gini within each year group;
data income?2;

set incomel;

if firstyr then do;
totalgini=0;

count=0;

end;

count+1;

totalgini+gini;

if lastyr then do;
average_gini=totalgini/count;
output;

end;

run;

**x*reshape data from long to wide;

proc transpose data=income2 out=income_final (drop=_name_);
by country3;

id year;

var gini;

run;

**xexport to csv file;
ods csv file="C:\Users\u0637206\Desktop\Income study\Gini50.csv";

proc print data=income_final;

run;
ods csv close;

9.1.2 Data extraction and cleaning

The following R scripts did the job of extraction and replacing missing values in the dataset.

mydata=read.csv("/users/jessica/Desktop/MSTAT PROJECT/giniall.csv",
header=T,sep=’,’ ,na.strings=".")
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new=mydatal,2:161]
gini=ts(new[60:79,],start=c(1987) ,end=c(2006) ,frequency=1)

#count number of non-missing values
n=rep(0,ncol(gini))

for (i in 1:ncol(gini)){

count=0

for (j in 1:nrow(gini)){

if (is.na(gini[j,i])==FALSE) count=count+1
}

n[i]=count

}

totnumber=data.frame(colnames(gini) ,n)
index=which(n>=16,arr.ind=T)
final.dataset=ginil[,index]

final=t (final.dataset)
dim(final.dataset)
colnames(final)=c(seq(1987,2006,1))
final

##American Countries, replace missing values##
library(zoo)

american=c(7,9,16,19,20)

z=window(final.dataset[,american])

#United States, Argentina, Brazil, Costa.Rica, Venezuela##
plot(z,plot.type=c("single"),col=c("red","blue","green", "purple",’orange’),
ylab="Gini",xlab="Year")

#text (z,colnames(z) ,pos=4)

z[,1]=na.locf(z[,1])##US

lines(z[,1],type="1",1ty=3,col="red")
z[,3]=c(na.approx(z[,3]),z[19,3])##Brazil
lines(z[,3],type="1",1ty=3,col="green")

z[,4]1=c(rep(z[3,4],2) ,na.approx(z[,4]))##Costa.Rica
lines(z[,4],type="1",1ty=3,col="purple")

z[,5]=na.locf(z[,5])#Venezuela

lines(z[,5],type="1",1ty=3,col="orange")
legend("topright",colnames(z),col=c("red","blue","green","purple",’orange’),
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1ty=1,cex=0.6)

##Asian &Oceanian Countries, replace missing values##
asian.oceanian=c(6,10,11,25)

z2=window(final.dataset[,asian.oceanian])
plot(z2,plot.type=c("single"),col=c("red","blue","green","purple",’orange’),
ylab="Gini",xlab="Year")

z2[,1]=c(na.approx(z2[,1]) ,rep(z2[18,1],2)) ##Australia
lines(z2[,1],type="1",1ty=3,col="red")

z2[,2]=na.locf(z2[,2])##China

lines(z2[,2],type="1",1ty=3,col="blue")

z2[,3]=na.locf (z2[,3])##Taiwan

lines(z2[,3],type="1",1ty=3,col="green")

z2[,4]=c(z2[2,4] ,na.approx(z2[,4]))##Kyrgyz.Republic
lines(z2[,4],type="1",1ty=3,col="purple")

legend ("topright",colnames(z2),col=c("red","blue","green","purple",’orange’),
1ty=1,cex=0.6)

##European Countries##
european=c(1,2,3,4,5,8,12,13,14,15,17,18,21,22,23,24,26,27,28,29,30,31,32,33)
eastern.europeanl=c(14,22,23,24,26)

z3=window(final.dataset[,eastern.europeanl])
plot(z3,plot.type=c("single"),col=c("red","blue","green","purple",’orange’),
ylab="Gini",xlab="Year")

z3[,2]=c(z3[2,2] ,na.approx(z3[,2]))#Ukraine
lines(z3[,2],typ="1",1ty=3,col="blue")

z3[,3]=c(z3[2,3] ,na.approx(z3[,3]))#Belarus
lines(z3[,3],typ="1",1ty=3,col="green")

z3[,4]1=c(z3[2,4] ,na.approx(z3[,4]))#Estonia
lines(z3[,4],typ="1",1ty=3,col="purple")

z3[,5]=c(z3[2,5] ,na.approx(z3[,5]))#Latvia
lines(z3[,5],typ="1",1ty=3,col="orange")

legend ("bottomright",colnames(z3),col=c("red","blue","green", "purple",’orange’),
1ty=1,cex=0.6)

eastern.european2=c(27,28,29,30,33)
z4=window(final.dataset[,eastern.european?])
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plot(z4,plot.type=c("single"),col=c("red","blue","green","purple",’orange’),
ylab="Gini",xlab="Year")

z4[,1]1=c(z4[2,1] ,na.approx(z4[,1]1))

lines(z4[,1],typ="1",1ty=3,col="red")

z4[,2]=c(z4[2,2] ,na.approx(z4[,2]1))

lines(z4[,2],typ="1",1ty=3,col="blue")

z4[,3]=c(z4[2,3] ,na.approx(z4[,3]))

lines(z4[,3],typ="1",1ty=3,col="green")

z4[,4]=c(z4[2,4] ,na.approx(z4[,4]))

lines(z4[,4],typ="1",1ty=3,col="purple")

z4[,5]=c(rep(z4[3,5],2) ,na.approx(z4[,5]))
lines(z4[,5],typ="1",1ty=3,col="orange")

legend ("bottomright",colnames(z4),col=c("red","blue","green","purple",’orange’),
1ty=1,cex=0.6)

western.european=c(1,3,4,21,32)

zb=window(final.dataset[,western.european])
plot(z5,plot.type=c("single"),col=c("red","blue","green","purple",’orange’),
ylab="Gini",xlab="Year")

z5[,1]=na.approx(z5[,1])

lines(z5[,1],typ="1",1ty=3,col="red")

z5[,3]=na.approx(z5[,3])

lines(z5[,3],typ="1",1ty=3,col="green")

z5[,4]=na.approx(z5[,4])

lines(z5[,4],typ="1",1ty=3,col="purple")

z5[,5]=c(rep(z5[3,5],2) ,na.approx(z5[,51))
lines(z5[,5],typ="1",1ty=3,col="orange")

legend ("bottomright",colnames(z5),col=c("red","blue","green", "purple",’orange’),
1ty=1,cex=0.6)

central.european=c(12,13,17,18,31)

z6=window(final.dataset[,central.european])
plot(z6,plot.type=c("single"),col=c("red","blue","green","purple",’orange’),
ylab="Gini",xlab="Year")

z6[,4]=na.approx(z6[,4])

lines(z6[,4],typ="1",1ty=3,col="purple")

z6[,5]=na.approx(z6[,5])

lines(z6[,5],typ="1",1ty=3,col="orange")

legend ("bottomright",colnames(z6),col=c("red","blue","green", "purple",’orange’),
1ty=1,cex=0.6)
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northern.european=c(2,5,8,15)

z7=window(final.dataset[,northern.european])
plot(z7,plot.type=c("single"),col=c("red","blue","green","purple",’orange’),
ylab="Gini",xlab="Year")

z7[,2]=na.approx(z7[,2])

lines(z7[,2],type="1",1ty=3,col="blue")

legend ("topright",colnames(z7),col=c("red","blue","green", "purple",’orange’),
1ty=1,cex=0.6)

fixed.dataset=final.dataset
fixed.dataset[,northern.european]=z7
fixed.dataset[,central.european]=z6
fixed.dataset[,western.european]=z5
fixed.dataset[,eastern.european2]=z4
fixed.dataset[,eastern.europeanl]=z3
fixed.dataset[,asian.oceanian]=z2
fixed.dataset[,american]=z
fixed=t(fixed.dataset)

colnames (fixed)=c(seq(1987,2006,1))
fixed

9.1.3 Simulation for N(0,1), x? — 5 and 5 errors

V.fun=function(N,T,t,X){

Si=rowSums(X[,1:T]) # total sum of each row, N by 1 vector
S=rep(0,N)

Z=rep(0,N)

sample.var=rep(0,N)

sum=0

for (i in 1:N) {
S[i]=ifelse(floor(T*t)==0,0,sum(X[i,1:floor(T*t)]))
Z[i1=1/sqrt(T)*(S[i]-floor (T*t) /T*S1[i])
sample.var[i]l=var(X[i,])

sum=sum+Z[i] "2/sample.var[i]-floor (T*t)*(T-floor (T*t)) /T 2
#use sample variance for sigma”2

}

V=1/sqrt (N) *sum

return (V)

¥
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sup.V=function(N,T,times){
sup.V=rep(0,times)

for (j in 1:times) {
X=matrix(,N,T)

for (i in 1:N){
X[i,]=rnorm(T,mean=0,sd=1)
}

for (k in 1:length(t)) {
V[k]l=abs(V.fun(N,T,t[k],X))
}

sup.V[jl=max (V)

}

return(sup.V)

}

9.1.4 Simulation for AR(1) processes

ARsup.V=function(N,T,times,h){ ##compute the sup of V, based N(0,1) errors
sup.V=rep(0,times)

for (j in 1:times) {

X=matrix(,N,T)

sigmahat2=rep(0,N)

for (i in 1:N){
X[i,]l=arima.sim(list(ar=rho) ,n=T)
sigmahat2[i]=kernel.sigmahat2(T,X[i,],h)
##using kernel function

}

for (k in 1:length(t)) {
Vik]=abs(V.fun(N,T,t[k],X,sigmahat?2))

}

sup.V[jl=max (V)

}

rm(j,X,sigmahat2,k,V)

return(sup.V)

}

V.fun=function(N,T,t,X,sigmahat2){
##using estimated sigma”2 to compute V, a function of t.##
S1=rowSums(X[,1:T]) # total sum of each row, N by 1 vector
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S=rep(0,N)
Z=rep(0,N)

sum=0

for (i in 1:N) {
S[i]l=ifelse(floor(T*t)==0,0,sum(X[i,1:floor(T*t)]))
Z[i1=1/sqrt(T)*(S[i]-floor (T*t) /T*S1[i])

sum=sum+Z[i] "2/sigmahat2[i]-floor (T*t)* (T-floor (T*t))/T"2
#use estimated variance for sigmahat™2

}

V=1/sqrt (N) *sum

return(V)

}

gamma.hat=function(T,1,Xi){
sum=0

mu=mean (Xi)

for (j in 1:(T-1)){

sum=sum+ (Xi [j]-mu) * (Xi[j+1] -mu)
}

sum=sum/ (T-1)

return(sum)

}

kernel.sigmahat2=function(T,Xi,h){ ###estimeated variance of T"-1/28_T,i(1)
sum=0

for (1 in 1:(T-1)){

sum=sum+kernel (1/h) *gamma.hat (T,1,Xi)

}

sum=sum*2+var (Xi)*(T-1) /T

return(sum)

}

kernel=function(x){ ##a ’flat top’ kernel
k=0

if (abs(x)<=1) k=1

else if (x>-2 & x< -1) k=x+2

else if (x>1 & x<2) k=2-x

return (k)

¥
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9.1.5 Estimate the long-run variance

T=20

N=33
times=1000
h=0.6
X=fixed;

sigmahat2=rep(0,N)

for (i in 1:N){

sigmahat2[i]=kernel.sigmahat2(T,X[i,],h)

##using kernel function to estimate the long-run variance

}

for (i in 1:length(t)){
ti=t[i]
V[i]=V.fun(N,T,ti,X,sigmahat2)
}

max (abs (V))

which.max (abs(V))

9.1.6 The power of the test

###power of the test according to Uniform distribution,
assume sigma_i=1 and change point is at T/4#i##

#generate a Unif[-1,1] sample when all the panels
have a common change in mean at T/4##

#generate a Unif[-1/2,1/2] sample when 50\’ of the
panels have a common change in mean at T/4##

sample.normal=function(min,max,N,T,k0,proportion){

e=matrix (rnorm(N*T,0,1) ,nrow=N) # random errors distributed as N(0,1)

# magnitude of changes in N panels, a uniformly distributed N by 1 vector
magnitude=c(runif (N,min,max))*rbinom(N,size=1,proportion)
Y=matrix(rep(0,N*T) ,nrow=N) #initialization: zero matrix
Y[,1:k0]=e[,1:k0] #no change up to time kO

Y[, (k0+1) : T]=matrix(rep(magnitude, (T-k0)) ,nrow=N,byrow=F)+e[, (k0+1) : T]
#change at time kO+1
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return(Y)

}

V.fun=function(N,T,t,X){ #compute V for each given t value and sample
Si=rowSums(X[,1:T]) # total sum of each row, N by 1 vector
S=rep(0,N)

Z=rep(0,N)

sample.var=rep(0,N)

sum=0

for (i in 1:N) {
S[i]l=ifelse(floor(T*t)==0,0,sum(X[i,1:floor(T*t)]))
Z[i]1=1/sqrt(T)*(S[i]-floor (T*t) /T*S1[i])
sample.var[i]=var(X[i,])

sum=sum+Z[i] "2/sample.var[i]-floor (T*t)* (T-floor (T*t))/T"2
#use sample variance for sigma”2

}

V=1/sqrt (N) *sum

return(V)

¥

##power, use sample variance##

power .normal=function(N,T,times,critical){
rej.count=0 #counter initialization

for (j in 1:times){

# generate the sample each time assuming null hypothesis is false
samplel=sample.normal (min,max,N,T,k0,proportion)
maxV=0 #initialization

for (k in 1:length(t)){

maxV=max (maxV,abs(V.fun(N,T,t[k],samplel)))

#caluate a new |V| and compare

+
rej.count=ifelse(maxV>critical,rej.count+1,rej.count)
}

power=rej.count/times

return(power)

}
sample.ar=function(min,max,N,T,k0,proportion){

e=matrix(arima.sim(list(ar=rho) ,n=N*T) ,nrow=N) # random errors distributed as AR(1)
# magnitude of changes in N panels, a uniformly distributed N by 1 vector
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magnitude=c(runif (N,min,max))*rbinom(N,size=1,proportion)
Y=matrix(rep(0,N*T) ,nrow=N) #initialization: zero matrix
Y[,1:k0]=e[,1:k0] #no change up to time kO

Y[, (k0+1) : T]=matrix(rep(magnitude, (T-k0)) ,nrow=N,byrow=F)+e[, (k0+1) : T]
#change at time kO+1

return(Y)

b

V.fun=function(N,T,t,X,sigmahat2){

##using estimated sigma”™2 to compute V, a function of t.##
Sl=rowSums(X[,1:T]) # total sum of each row, N by 1 vector
S=rep(0,N)

Z=rep(0,N)

sum=0

for (i in 1:N) {
S[i]l=ifelse(floor(T*t)==0,0,sum(X[i,1:floor(T*t)]))
Z[i1=1/sqrt(T)*(S[i]-floor (T*t) /T*S1[i])

sum=sum+Z [i] "2/sigmahat2[i]-floor (T*t)* (T-floor (T*t))/T"2
}

V=1/sqrt (N)*sum

return(V)

}

##power, use sigmahat2=1##
power.ar=function(N,T,times,critical,sigmahat?2){
rej.count=0 #counter initialization

for (j in 1:times){

# generate the sample each time assuming null hypothesis is false
samplel=sample.ar(min,max,N,T,kO,proportion)

maxV=0 #initialization

for (k in 1:length(t)){

maxV=max (maxV,abs(V.fun(N,T,t[k],samplel,sigmahat2)))
#caluate a new |V| and compare

b
rej.count=ifelse(maxV>critical,rej.count+1,rej.count)
}

power=rej.count/times

return(power)

¥
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