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Abstract 

Regular physical activity, fitness, and exercise are crucial for the health maintenance and well 

being of people of all ages. However, increased exercise or work intensity may lead to certain 

medical conditions. It is conjectured that increased activity intensity may be associated with 

pelvic floor disorders. 

Pelvic floor disorders including urinary leakage and pelvic organ prolapse (dropping of pelvic 

organs such as the uterus into or out of the vagina) are very prevalent. Limited data suggest that 

to date physical activity may be beneficial in terms of its general effects and may be harmful to 

the pelvic floor; however, previous studies examining this association are methodologically 

flawed. In two case-control studies (collectively termed the PhActs study, [Physical Activity 

Study]), we will examine the association between life-long physical activity and different 

disorders of the pelvic floor.  

Primary analyses of the PhActs Study will focus on the analyses of strenuous physical activity as 

an exposure variable for the outcome of stress urinary incontinence (SUI case-control study) and 

pelvic organ prolapse (POP case-control study).  
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Secondary analyses will be performed using logistic regression incorporating physical activity 

measured in different ways, graphical time trends display, subcategories of physical activity and 

sensitivity analyses to examine and correct for ‗errors in measurement‘ where the data permit. 

Odds ratios will be adjusted for ‗errors in measurements‘, most likely using regression 

calibration methods.  

The main focus on this MStat project is the analyses which involve adjustment for ‗error in 

measurement‘. In this study, existing data from a reproducibility sub-study of women enrolled in 

the case-control study will be analyzed by statistical techniques, Regression calibration and 

Simulation/extrapolation (SIMEX), allowing adjustments to be made to produce correct standard 

errors and test statistics. Regression calibration and simulation/extrapolation will be compared in 

this secondary study. SAS and STATA will be used in this study.  

Regression calibration is a statistical method for adjusting point and
 
interval estimates of effect 

obtained from regression models commonly used
 
in epidemiology for bias due to measurement 

error in assessing nutrients or
 
other variables. Regression calibration is

 
appropriate when a gold 

standard is available in a validation study and a
 
linear measurement error model with constant 

variance applies or when replicate
 
measurements are available in a reliability study and linear 
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random
 
within-person error can be assumed. The PhActs study includes a sub-study involving 

replicate measurements of physical activity.  

The simulation extrapolation (SIMEX) is a method for addressing measurement error in 

generalized linear models. This method shares the simplicity of the regression calibration method 

and is suitable for problems with additive measurement error. SIMEX is a simulation-based 

method aimed at reducing bias caused by the inclusion of error-prone covariates. Estimates are 

obtained by adding additional measurement error; a type of re-sampling approach. This re-

sampling uncovers the trend of measurement error. Once the trend is estimated, final estimates 

are obtained by extrapolating back to the case of no measurement error. 

This project will compare regression calibration to SIMEX based on data available early in the 

PhActs study and will make a recommendation on choice of correction, with a view toward the 

final analysis.  
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Introduction 

Pelvic Floor Disorders 

Physical activity is any activity that causes your body to work harder than normal. The actual 

amount of physical activity you need depends on your health goals and body conditions
1
. 

Regular physical activity is essential to maintain health and welfare at all ages. However, 

increasing physical activity intensity or occupational activity may lead to certain medical 

conditions or adverse effect. Presumably, increased activity may be associated with pelvic floor 

disorders
2
.  

Pelvic floor disorders are problems that affect women‘s pelvic organs -- the uterus (or womb), 

vagina, bladder, rectum and the muscles that surround and support them. The three primary 

categories of pelvic floor disorders in American that most women seek treatment for are urinary 

incontinence (SUI), fecal incontinence and pelvic organ prolapsed (POP) (when one or more of 

the pelvic organs fall into the vagina)
2,3

. The fecal incontinence condition will not be addressed 

specifically since for most of the middle-aged women, the cause of fecal incontinence is not 

necessarily related to the pelvic floor but rather to the other conditions like irritable bowel 

syndrome
4
. Urinary incontinence and pelvic organ prolapse leakage (down to the uterus or the 
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pelvic organs are the vagina) are very common in pelvic floor disorders and will be discussed in 

this study
5
.  

In the U.S., the prevalent rate for women having at least one pelvic disorder is one half. One 

ninth undergoes surgery for pelvic organ prolapse or urinary incontinence in her lifetime. Among 

those who undergo surgeries for pelvic organ prolapse or urinary incontinence in their lifetime, 

one third has another surgery for pelvic floor disorders within 5 years of the first
6
. Even though 

there may be other complication conditions for which the women were initially operated, the 

high rate of re-admission back to surgery may still relate to the recurrence risk of pelvic floor 

disorders. 

The rate of pelvic floor disorders is increasing dramatically and is expected to increase even 

more over the next 30 years within the aging population
7
. It is extremely important now to 

understand the risk factors and to prevent one fourth of women (prevented fraction
24

) from 

developing pelvic floor disorders, which would have save 90,000 women per year from suffering 

these disorders in the future.  
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Measurement error: 

Measurement error is the variation between measurements of the
 
same quantity on the same 

individual.
 
Relationships between physical activity and pelvic floor disorders have become the 

focus of many analytic studies. Given often relatively limited variation in the assessment in 

measurement of predictor variables, the results of observational studies largely depend on the 

correct measurement of physical activity and other potential risk factors. However, errors in 

measurement in the predictor variables lead to a biased and inefficient estimate of the 

relationship of the exposure to disease
8
.  

The following formula and equations are from the book ―Measurement Error in Nonlinear 

Models: A Modern Perspective. Second Edition‖ by R. J. Carroll et al
17

. 

There are two types of measurement error: classical measurement error and Berkson 

measurement error. In symbols, let Xi be the true variable and Wi be the variable measured with 

error. The classical measurement error model is stated as:  

Wi = Xi + Ui 
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In the classical measurement error model, Wi is an unbiased measure of Xi, so that Ui must have 

mean zero (E(Ui|Xi)=0). The error structure of Ui could be homoscedastic (constant) or 

heteroscedastic.  

Another type of measurement error model is Berkson measurement error model. The Berkson 

measurement error model differs from the classical measurement error by  

Xi = Wi + Ui 

Where E(Ui|Wi)=0 so that the true measurement dose have more variability than the estimates 

dose.  

In the PhActs study, the assessment of physical activity is likely subject to measurement error. In 

this study, women complete the two same questionnaires separated by four months. The 

measurement error that occurs when assessing a person‘s physical activity involves bias related 

to the actual activities performed and the true duration of time they were performed in addition to 

random variation. There may be various reasons for the variability between the two reports, such 

as bad memories etc. The larger the correlation coefficient between the two responses, the more 

reliable the measurement, assuming their difference is not different from zero on average.  In this 

study, I will consider a correlation coefficient larger than 0.9 to be acceptable, indicating random 
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error instead of measurement error.  Measurement error often occurs as the ―flattened-slope‖ 

pattern
8
, which means the patients who report higher intensity of physical activities in the first 

response may tend to report less intensity in the second response, or vice versa.  

The effect of measurement error becomes much more complicated if the model contains more 

than one predictor variable measured with error. Besides the assessments regarding activity 

measurement, external studies from previous literature show that body mass index and caffeine 

intake may be potentially measured with error
8,9

.  

 

Bootstrapping 

Bootstrapping is a computer-intensive, general purpose simulation approach in statistical 

inference by resampling from an approximate distribution. The choice of the approximate 

distribution is by checking the empirical distribution of the existing data
21

. If the observed data is 

approximately independent and identically distributed, the bootstrapping will construct a number 

of resamples by random sampling with replacement from the original dataset
22

.  

http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Resampling_(statistics)
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Boostrapping is recommended whenever the distribution of a statistic is complicated or unknown 

because of its independence of distribution. It is also working well when the sample size is 

insufficient for direct statistical inference. However, the sample size needed for bootstrapping is 

hard to define since the number of bootstrap samples recommended in literature has increased as 

available computing power has increased
23

. Ideally, the same as most of the statistical analysis, 

as the number of bootstrapping sample is increasing, the procedure itself will reduce the effects 

of random sampling errors and gave much closer estimation.  

 

Regression calibration and Simulation extrapolation (SIMEX) 

Nonlinear measurement error models usually begin with an underlying nonlinear model such as 

logistic regression for the response Y in terms of predictors, including the perfect measured 

predictors and those measured with errors
17

. In order to distinguish two kinds of predictors, we 

add subscripts to the predictor X. XZ (sometimes Z alone can be used to represent XZ) will be 

used to represent the predictors which for all practical purposes, are measured without error; and 

XU are the true values of these variables. However, for some reason, those true values cannot be 

measured or observed accurately for all study subjects.  The critical point of the measurement 
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error model is that we can measure or observe a variable XW, (sometime W alone can be used to 

represent XW) which substitutes for the true and unobserved variable XU. These two are related 

but differ by a measurement error. The parameters in the model relating response variable Y and 

(XZ, XU) cannot, of course, be estimated directly by fitting Y to (XZ, XU), since XU is not 

observable. The goal of measurement error modeling is to obtain nearly unbiased estimates of 

these parameters indirectly by fitting a model for Y in terms of (XZ, XW).  

To identify and select methods to adjust for measurement error in our study, regression 

calibration and simulation extrapolation methods will be performed and compared in this report. 

In principle, regression calibration is a technique that corrects biases in regression results in 

situations where exposure variables are measured with error. It is a statistical method for 

adjusting point and
 
interval estimates of effect obtained from regression models commonly used

 

in epidemiology for bias due to measurement error in assessing nutrients or
 
other variables

8
.  

Regression calibration is
 
appropriate in the following two situations. First, it is appropriate when 

a gold standard is available in a main study/internal or external validation study and a
 
linear 

measurement error model with constant variance applies
10,11

. The main issue in the validation 

study is that this kind of study doesn‘t have data on the outcome variable for the primary 
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regression models but focuses on the comparison of the error-prone measurement and the gold 

standard. The regression parameter of interest cannot be estimated in the validation study
12

. The 

validation study with gold standard will not be specified in detail. Instead, the validation study 

with replicate measures will be further discussed.  

The second situation in regression calibration is that when the main study has an internal 

validation study design with replicate
 

measurements, and the value of the variance of 

measurement error can be assumed
10,11

.  

The regression calibration method is a straightforward approach in that we need only to fit the 

regression model with the XW and XZ instead of XU. Replication is going to be used in a 

calibration function for estimating XU. This first step of regression results in a calibration 

function for estimating XU. The unobserved covariates are then replaced by their predicted 

values from the calibration model in a standard analysis. Finally, the standard errors are adjusted 

and calculated by bootstrap to account for the estimation of the unknown covariates
13

.  

The following mathematical inference and equations are exactly those found in the paper ―The 

Regression Calibration Method for Fitting Generalized Linear Models with Additive 

Measurement Error‖ by James W. Hardin et al. 
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With ki replicate measurement, the measurement error variance may be estimated by
13 
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In order to perform the calculation to obtain the linear approximant, we make the estimated 

substitutions for true variables. First, we use μW = μXU; substituting the mean of the replicate 

values for the mean of the unknown true covariates
13,14
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Where .
2 / iiiiii kkk , the estimated variance matrix for the unknown XU is seen in two 

components due to the variance of XU and the measurement error variance
13

. 

Up to this point, we can derive the estimated values for the unknown XU and perform a standard 

analysis replacing XU by XW.  

Simulation extrapolation (SIMEX) is a simulation based method, sharing simplicity of 

application the regression calibration, but with larger computation intensity
15

. The idea 

underlying the method is that the effect of measurement error can be determined by simulation. 

The method can be simply separated into two steps. The first one is a re-sampling stage. In the 

re-sampling step, more datasets made up from the existing dataset with additional measurement 

errors are generated. For each data set, the naïve estimate of the parameter can be estimated and 

the trend of estimated parameters versus the variance of the extra error can be established. The 

correct estimators of the parameters are obtained in the second stage by extrapolating this trend 

back to the case of no measurement error
15, 16

.  
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Statistical Analysis 

A self-administered lifetime physical activity questionnaire (the LPAQ) was developed, tested 

and found to be reproducible in women ages 39 to 65 to assess current activity
20

. The LPAQ is 

self-administered to determine physical activity during leisure time, household time and outdoor 

time for the past year and historical back to the age of menarche, separated into 5 categories 

including menstruation to age 21, age 22 to age 34, age 35 to age 50, age 51 to age 65 as well as 

the past year. Occupational activity is addressed separately in the PhActs study by a separate, 

validated occupation questionnaire in a lifetime span.  

For each activity reported on the LPAQ and Occupational Questionnaire, a MET value will be 

assigned from the Compendium of Physical Activities to show intensity of each activity. The 

Occupation Questionnaire doesn‘t assign the MET value for each occupation; instead, a 

categorical scale (1 to 4) is assigned for a group of activities. The levels of occupational MET are 

consistent with descriptions listed in the Compendium of Physical Activities. The MET score 

will then be multiplied by the average number of hours per week reported in order to calculate 

MET hours per week. Each activity will be summed up according to the different age spans to 

get the accumulative activity intensity over the lifetime.  
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In addition to the standard calculation of MET hours per week, the Strenuous Activity Index will 

be used to calculate the average of hours per week spent in strenuous physical activity. The 

Strenuous Activity Index provides alternative scoring of each listed activity in the LPAQ and 

occupational levels as a function of each activity‘s hypothesized contribution to the development 

of POP or SUI. Only the time spent in activities level 3 or 4 will be counted as strenuous activity 

in the occupational report. The strenuous activity for the LPAQ will be assigned in different 

ways according to the activity description.  

1) Dataset statistical summary: description and covariate selection criteria: 

The datasets have separate sub-datasets, including medical history, physical exam, LPAQ 

physical activities (leisure, household, outside) and occupation activity. The study aim is to build 

up a logistic regression model to test the relationship between the log odds of POP or SUI 

diseases and the physical activity strenuousness. In our study, the total activity measurement 

includes both the LPAQ activity and occupational activity.  

Each activity is recorded twice separated by 2 to 4 weeks, ideally. The data of patients who 

completed both first and second response are collected and used to correct for errors in 

measurement in physical activity. The datasets need for their analysis included 31 observations 
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in the POP study and 29 observations in the SUI study (Table 1). The intraclass correlation 

coefficient, used to measure the two measurements, reproducibility for a lifetime span, are 0.66 

in the LPAQ, 0.75 for the overall activity including the LPAQ and occupational activity, and 

0.81 for the strenuous activity in the POP study (Table 6). The corresponding intraclass 

correlation coefficients in the SUI study are 0.81, 0.78 and 0.61 (Table 7), which suggests 

substantial measurement error in this study. The correlation plots for LPAQ, LPAQ plus 

occupation, and strenuous activities are shown in Figure 1 to Figure 3 in the POP study (the 

similar correlation plots for the SUI study).  The different MET hr/wk between two responses is 

not necessarily increasing as the average number of activities increases as shown in Figure 4 to 

Figure 5.  Plots in the SUI study were similar.  

The potential risk factors in POP or SUI study are age, ethnicity/race, education, smoking, 

caffeine intake, childbirth (vaginal vs cesarean deliveries), hysterectomy, hormonal therapy, 

medical conditions, healthy condition and body mass index.  By checking the frequency of the 

each potential risk factor, the variables can be identified that have less than 1/3 of cases. If 

included in the logistic regression model, the software would have to stop by computational error. 

Therefore those variables will be excluded from the present analysis. In addition, there are some 

other variables such as number of cesarean deliveries, number of vaginal deliveries, whether 
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hormone replacement pills or patches are being taken right now and whether the hormone 

replacement therapy was taken before, which have missing values in some cells and they may be 

dropped automatically by the software when running logistic regression. So these three variables 

will also be excluded.  

Among the remaining potential risk factors, the predictor variables Z that are assumed to have 

been measured without appreciable error are age, body mass index, schooling, ever pregnant or 

not, ever experienced menopause or not, health condition, prescriptive medications and caffeine 

intake (an indicator variable)
17

.  

Method of repeated physical activity measurement (first paper then paper again, first paper then 

web, first web then paper, or first web then web again) is another important variable in the 

PhActs study.  We found there was no statistically significant difference among these four 

groups (Table 2) in this small preliminary dataset. Therefore, ‗reproducibility study‘ group is not 

included in the final model of the present analysis. Larger sample size may be required to detect 

any differences and incorporate this variable into the model.  

2) Tables for Descriptive Statistics 

 Cases Controls Total number of observation 

POP  10 21 31 

SUI 8 21 29 

Total unique patients  39 
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Table 1,  Case and control distribution in POP and SUI studies 

 

 Paper-web Web-paper Paper-paper  Web-web P-value among four groups 

POP  1 1 23 6 0.22 

SUI 1 2 24 2 0.68 

Table 2,  Descriptive statistics for the reproducibility 

 

Potential risk factor Number with factor absent Number with factor present 

cough  31 0 

heart attack  31 0 

angina  31 0 

sleep apnea  31 0 

major depression  30 1 

diabetes  30 1 

smoking /number of cigarettes per day 29 2 

high blood pressure 28 3 

hysterectomy  27 4 

Cancer 26 5 

ever pregnant or not 26 5 

Arthritis  25 6 

cesarean delivery  24 2 

Table 3. Frequency table for the potential risk factors for both POP and SUI study 
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Variable N Mean Std Dev Minimum Maximum 

Total MET hrs/wk for the lifetime 

LPAQ activity in Response 1 

31 405 207.6 100.3 997.5 

Total MET hrs/wk for the lifetime 

LPAQ activity in Response 2 

31 374.2 196.6 85.5 739 

Total MET hrs/wk for the lifetime 

LPAQ activity and occupational 

activity in Response 1 

31 490.8 207.5 122.3 1107 

Total MET hrs/wk for the lifetime 

LPAQ activity and occupational 

activity in Response 2 

31 455.4 197.4 163.3 800.9 

Total MET hrs/wk for the lifetime 

strenuous LPAQ activity and 

occupational activity in Response 1 

31 229 137.7 6.6 694.1 

Total MET hrs/wk for the lifetime 

strenuous LPAQ activity and 

occupational activity in Response 2 

31 200.7 123.7 32.3 545.4 

Table 4.  Statistical summary for the lifetime LPAQ, LPAQ plus occupation and strenuous 

activity MET hr/wk for the POP study 

 



 20 

Variable N Mean Std Dev Minimum Maximum 

Total MET hrs/wk for the lifetime 

LPAQ activity in Response 1 

29  350.1  157.3  100.3  721.2  

Total MET hrs/wk for the lifetime 

LPAQ activity in Response 2 

29 336.5  186.5  85.5  739.0  

Total MET hrs/wk for the lifetime 

LPAQ activity and occupational 

activity in Response 1 

29 442.1  164.2  122.3  835.2  

Total MET hrs/wk for the lifetime 

LPAQ activity and occupational 

activity in Response 2 

29 425.7  211.6  163.3  1034.0  

Total MET hrs/wk for the lifetime 

strenuous LPAQ activity and 

occupational activity in Response 1 

29 193.9  92.3  6.6  355.2  

Total MET hrs/wk for the lifetime 

strenuous LPAQ activity and 

occupational activity in Response 2 

29 178.5  112.7  32.3  504.6  

Table 5.  Statistical summary for the lifetime LPAQ, LPAQ plus occupation and strenuous 

activity MET hr/wk for the SUI study 
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  web  paper 

web 0.92   

  n=6 n=1 

paper   0.74 

  n=1 n=23 

 

  correlation coefficient standard error 95% CI 

web-web 0.92 0.196 0.54, 1 

paper-paper 0.74 0.147 0.45, 1 

Table 6. Correlations between the first response and the second response in the POP study for all 

activities lifetime 

 

  web  paper 

web 0.94   

  n=6 n=1 

paper   0.71 

  n=1 n=23 

 

  correlation coefficient standard error 95% CI 

web-web 0.94 0.171 0.60, 1 

Table 7. Correlations between the first response and the second response in the SUI study for the 

strenuous activities lifetime 
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Figure 1. Bland and Altman plots of the difference in total MET hours lifetime between the two 

responses and the average MET hr/wk in lifetime LPAQ activities in the POP/SUI study (p>0.05 

by t-test of the response 1 minus response 2 difference.) 
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Figure 2. Bland and Altman plots of the difference in total MET hours lifetime between the two 

responses and the average MET hr/wk in the lifetime overall activities in the POP/SUI study. 

(p>0.05 by t-test of the response 1 minus response 2 difference.) 
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Figure 3. Bland and Altman plots of the difference in total MET hours lifetime between the two 

responses and the average MET hr/wk in the lifetime strenuous activities in the POP/SUI study  
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Figure 4. Bland and Altman plots of the difference in total MET hours lifetime between the two 

responses and the average numbers of activities in the lifetime LPAQ activities in the POP/SUI 

study 
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Figure 5. Bland and Altman plots of the difference in total MET hours lifetime between the two 

responses and the average numbers of all activities including LPAQ and occupation in the 

POP/SUI study 

 

 

 

 

 

 



 27 

3) Regression calibration and Simulation extrapolation 

In the subset of PhActs data used for the present analysis, repeat measurements of the physical 

activity MET hr/wk are obtained as response 1 and response 2. The internal repeat measurement 

approach is often more readily available in many large cohort studies
18

. However, not many case 

control studies such as ours are addressed by the literature. We will compare regression 

calibration with another method simulation extrapolation (SIMEX). Previous research indicated 

that physical activities were suggestive of a protective effect to some extent. However, too many 

or certain kinds of physical activities may lead to adverse effects
1,2

.   

Since there are so many variables compared to just a few observations, more variables are about 

to be dropped in the logistic regression model. Let‘s first take a look at the model with a binary 

outcome and each potential factor, one at a time. The activity measurement is the main focus and 

the study aim of the PhActs. So these are the variables which will be included for sure in the 

logistic regression model.  By checking the correlation of activity measurement, we find that 

collinearity problem exists when both activity and strenuous activity are taken into account. 

Depending on the intraclass correlation coefficient, the correlation of coefficient is more likely to 

be really high. So each activity will be modeled separately. For a variable to have a qualitatively 

important effect, the odds ratio should be greater than 1.5 or less than 0.67. Under this standard, 
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the reasonable risk factors are menopause and health conditions chosen judging by their 

coefficients. Now we build a model with one continuous variable, activity; one binary variable, 

menopause; and one categorical variable, health condition as predictors. These same variables 

are included in the SUI study analysis.  

By checking the linearity of outcome and predictors, we found that the log odd of POP/SUI was 

roughly linearly related to the activities intensity (Figure 6-Figure 9), which means the activity 

variable could be considered as the continuous predictor linearly related to the log odds of 

developing POP and SUI.     

Here we compared the regular logistic regression model with the average activity as one 

covariate and menopause, health condition as the other two variables with the results from 

regression calibration and simulation extrapolation in the coefficient, standard error and 95% 

confident interval (Table 8 to Table 11). Although it is hard to make any conclusion according to 

the results shown below, as the number of observations is increasing, I am sure that the result 

will be much more convincing.   

Using the SIMEX method, not only can we obtain the unbiased estimates and correct standard 

errors, we can also show that the amount of measurement errors affects the estimated coefficients.  
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Figure 6. Linear relationship between the log odds of developing POP and lifetime overall 

activity at response 1.  
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Figure 7. Linear relationship between the log odds of developing POP and lifetime overall 

strenuous activity at response 1.  
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Linearity of Coefficient and Three Categories
of Activity in SUI study
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Figure 8. Linear relationship between the log odds of developing SUI and lifetime overall 

activity at response 1.  
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Figure 9. Linear relationship between the log odds of developing SUI and lifetime overall 

strenuous activity at response 1.  
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Replicate measurements variable Coefficient Standard Error 95% CI 

Regular logistic regression .0043 .00257 -.0007   .0093 

Regression calibration .0052 .00328 -.0016   .0119 

Simulation extrapolation .0044 .00981 -.0158   .0245 

Table 8. Comparison of coefficient, standard error and 95% CI for measurement error correction 

in the lifetime activities among three methods in the POP study 

 

Replicate measurements variable Coefficient Standard Error 95% CI 

Naïve logistic regression .0104 .00516 .0003   .0205 

Regression calibration .0119 .00627 -.0010    .0248 

Simulation extrapolation .0114 .02116 -.0322    .0549 

Table 9. Comparison of coefficient, standard error and 95% CI for measurement error correction 

in the lifetime strenuous activities among three methods in the POP study 

 

Replicate measurements variable Coefficient Standard Error 95% CI 

Regular logistic regression .0008 .00243 -.0040   .0055 

Regression calibration .0009 .00307 -.0054   .0073 

Simulation extrapolation .0008 .00650 -.0126   .0142 

Table 10. Comparison of coefficient, standard error and 95% CI for measurement error 

correction in the lifetime activities among three methods in the SUI study 

 

Replicate measurements variable Coefficient Standard Error 95% CI 

Naïve logistic regression .0047 .00494 -.0050     .0144 

Regression calibration .0065 .00736 -.0087     .0217 

Simulation extrapolation .0061 .01119 -.0170     .0290 

Table 11. Comparison of coefficient, standard error and 95% CI for measurement error 

correction in the lifetime strenuous activities among three methods in the SUI study 
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The graph illustrates the extrapolated point estimates for activity fitted model in both lifetime 

activities and lifetime strenuous activities in POP study (Figure 7 and Figure 8) 
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Figure 7.  The effect of measurement error on parameter estimate in the lifetime activity 
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Figure 8.  The effect of measurement error on parameter estimate in the lifetime strenuous 

activity 
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The graph illustrates the extrapolated point estimates for activity fitted model in both lifetime 

activities and lifetime strenuous activities in SUI study (Figure 9 and Figure 10) 

Naive Estimate
SIMEX Estimate

.0
00

6
.0

00
65

.0
00

7
.0

00
75

.0
00

8
.0

00
85

C
oe

ffi
ci

en
t

-1 0 1 2
Lambda

Naive: .0007766    SIMEX: .0007643

Extrapolant: Quadratic  Type: Mean

Simulation Extrapolation: w

 

Figure 9.  The effect of measurement error on parameter estimate in the lifetime activity 
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Figure 10.  The effect of measurement error on parameter estimate in the lifetime strenuous 

activity 



 34 

Discussion 

The coefficient of average lifetime activity is 0.0043 in the regular logistic regression model, 

indicating the for 100 MET hours per week units increasing in lifetime, the expected change in 

the log of odds of developing POP disease is 100*0.0043=0.43. The odds ratio for developing 

POP for a patient with 100 more MET hours per week than another patient over their lifetime is 

exp(0.43)=1.53. After correction for error in measurement, The odds ratio for developing POP 

for a patient with 100 more MET hours per week than another patient over their lifetime is 

exp(0.52)=1.67 using regression calibration and exp(0.44)=1.55 using SIMEX.  

The odds ratio for developing POP for a patient with 50 more strenuous MET hours per week 

than another patient over their lifetime is exp(50*0.0104)=1.68 using regular logistic regression 

model; exp(50*0.0119)=1.81 using the regression calibration; and exp(50*0.0114)=1.76 using 

SIMEX.  

In this study, we consider the classical additive error model W=X+U where conditional on (Z, X) 

errors have mean zero and constant known covariance matrix
17

. The critical assumption for valid 

use of regression calibration in this study is that measurement error is non-differential with 

respect to the response variable, Y, that is, f(Y|x,X)=f(Y|X). In our study, the errors in 
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measurement are assumed to be independent from being chosen as a case or control in both POP 

and SUI studies. In the regression calibration study performed, the measurement error variance 

can be estimated using the formula in the introduction section (3662 for the strenuous activity 

and 10420 for all activity in the POP study; 4248 for the strenuous activity and 8578 for all 

activity in SUI study). Regression calibration is ideally suited for problems in which the 

calibration function E(X|W) can be estimated nearly unbiasedly and in generalized linear models 

such as logistic regression model in our case. Simulation extrapolation (SIMEX) is ideally suited 

for any problem with additive measurement error, and more commonly to those problems which 

can use the Monte Carlo methods to simulate the process of measurement error generation
17

. 

SIMEX is very general in the sense that the bias due to measurement error in almost any 

estimator of almost any parameter is readily estimated and corrected, at least approximately. The 

idea underlying SIMEX is the fact that the effect of measurement error on an estimator can be 

determined experimentally via simulation. SIMEX assumes replicated measurements are 

available for all subjects, but no additional assumptions are made about the error variances, that 

is, it is not assumed that they are known and they could be homoscedastic or heteroscedastic
17

. In 

the present subset of PhActs data, all the observations have the record of completion of both 

response and measurements for the replica variable are available for all individual. However, the 
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full PhActs study was not planned to have replicates for every women. This means that SIMEX 

would be the method of choice, if the reliability of the activity variables from the reproducibility 

study is precisely measured. In conclusion, the regression calibration and simulation 

extrapolation both are suitable in addressing the errors in measurement in the PhActs study, but 

SIMEX may be financially more feasible. In addition, the results shown above need to be 

validated using larger sample size.  

The bootstrapping method should give a better estimation of the parameter as well as the smaller 

standard error and more accurate 95% CI as the numbers of replication increase. However, it is 

not the case in this study (Table 12). The standard error in this study wasn‘t getting smaller as 

the number of bootstrapping replications increased, instead, the standard error showed as a 

fluctuating pattern. The main concern most likely to be related to this study is small sample size. 

Since the small sample size gives only a few values for the bootstrapping to choose from, so the 

bootstrapping sample will underrepresent the true variability since observations are frequently 

repeated and bootstrap samples, themselves, can repeat
25

.  
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Number of Bootstrapping Replications Coefficient of Activity  Standard Error 95% CI 

199 (default) 0.0046 0.00738  -.0105          .0198 

1000 0.0047 0.00753  -.0108          .0202 

2000 0.0052 0.00906  -.0134          .0238 

5000 0.0051 0.00773  -.0108          .0210 

10000 0.0045 0.00909  -.0142          .0232 

Table 12. Standard error and 95% CI for different numbers of bootstrapping replications  

The strategies I suggest to continue the PhActs study are first, much larger sample size is needed 

to have enough statistical analytical power (Table 13). The present analysis was limited by the 

need to exclude the variables due to small sample size. Especially when all the potential risk 

factors are needed to be considered in predicting the possibility of developing the POP or SUI 

disease, more observations are need to incorporate up to 15 covariates. Second, if it is financially 

impossible to collect the second response from every patient, external validation studies can be 

sought to obtain the variance of the measurement error required by regression calibration. 

Depending on what we have right now, in order to perform the analysis using regression 

calibration, another thought is to apply the measurement error we calculated to the whole dataset 

in the future, which overcomes the financially problem to collect every replicate measurement 

for all study population. Last, to improve the validity of statistical analysis, standardized data 

entry coding and data validation are not only necessary but important in the correct conclusion.  
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Intraclass correlation coefficient Sample Size 

0.75 674 

0.80 147 

0.85 50 

0.90 21 

0.95 8 

Table 13. Correlation between two responses and sample size needed to make sure the 95% CI is 

at least above 0.7 

Compared to the previous literature
20

, our data shows the similar reliability between two 

measurements but in such a small sample size. Previous epidemiology studies have shown that 

physical activity is associated with a reduced incidence of disease. However, we are not able to 

draw this conclusion using current dataset. The result of this study shows that the average 

lifetime activity can be measured using a self-administered questionnaire. The reliability of the 

two replicated measurement is really high in our study.  
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Study limitation 

In summary, statistical power may be adversely affected in the present analysis by a number of 

mechanisms:  

1) A small study size, as expressed by the number of events, Y. There are only 31 observations 

with 10 cases and 21 controls in the pop study and even less (29 observations with 8 cases and 

21 controls) in the SUI study. Further, the regression calibration and SIMEX won‘t take the 

observations with missing values into account, leading to only 16 ultimate usable observations 

finally. We addressed this limitation by reducing the number of potential risk factors in the 

logistic regression model to keep the numbers of observations still 31 and 29.  

2) Multicollinearity between the predictor variables in the disease regression—the typical 

collinearity problem. For example, even though the variables whether hormone therapy was 

taken before and whether hormone therapy is taken right now are not in the final analysis 

because of missing values, however, if they were included, one of the two variables would be 

dropped due to the collinearity due to the perfectly correlated in the present subset of data. Also, 

the overall activity and strenuous activity assessment have high correlation with each other, 

leading to the collinearity problem.  
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3)  Too many covariates compared to too few cases.  Less statistical significance can be detected 

in this situation, and zero cells caused more variables to be dropped.  

Designing a study of sufficient sample size to correct for the measurement error will help to 

diminish these types of problems by decreasing the variance of the calibration coefficients. If the 

validity correlation among replicates is low, the expected values, conditional on the replicated 

values and other variables measured without error, will often differ substantially from the actual 

individual true values. Finally, the regression calibration and simulation extrapolation analysis 

are commonly used and compared in the cohort study with large cohort numbers. More 

experience is needed to compare these methods in a case-control study.  
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